
UCRL-MA-147859

Tool Gear Documentation

J. May, J. Gyllenhaal

April 3, 2002

US. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Tool Gear Documentation

Developing Tools with Tool Gear

Tool Gear is designed to allow tool developers to insert
instrumentation code into target programs using the DPCL library.
This code can gather data and send it back to the Client for
display or analysis. Tools can use the Tool Gear client without
using the DPCL Collector. Any collector using the right
protocols can send data to the Client for display and analysis.
However, this document will focus on how to gather data with the
DPCL Collector.

There are three parts to the task of using Tool Gear to gather
data through DPCL:

1. Write the instrumentation code that will be loaded and run in
the target program. The code should be in the form of one or
more functions, which can pass data structures back to the
Client by way of DPCL. The collections of functions is compiled
into a library, as described below.

2. Write the code that tells the DPCL Collector about the
instrumentation and how to forward data back to the Client.

3 . Extend the client to accept data from the Collector and
display it in a useful way.

The rest of this document describes how to carry out each of
these steps.

I. Writing instrumentation code.

DPCL loads instrumentation code into a target program, and this
instrumentation gathers data (or controls the program in some
other way) and optionally sends data back to the Client by way of
DPCL and the Collector. DPCL can cause a program to call any
function, so there are numerous possibilities for interacting
with the target code. DPCL can execute instrumentation three
ways: as a "point probe," meaning that the code is executed
whenever the target program reaches a specific location; as a
"one-shot probe," which is executed immediately regardless of
what the target program is doing at the time; or as a "phase
probe," which is executed repeatedly at a specific time interval.
At present, DPCL can insert point probes only at certain
locations in a target program: ,just before and after function
calls, and at the beginning and end of functions. Regardless of
how the instrumentation is activated, the process of writing the
probe functions is the same.

Although DPCL supports a variety of features for building "probe
expressions," which are segments of code that run in a target
program, Tool Gear focuses on supporting function calls that the
the tool developer has written to gather data. These functions
are called "probe functions," and they are contained in libraries
called "probe modules," which DPCL loads into a running target
program. Tool developers can extend the DPCL Collector to use
the full capabilities of DPCL to create probe expressions, but
that task is complicated, and it is not described here.

Probe functions are typically written in C and take one of two
f oms :

void Myprobe(void 1;

or -- _-

#include XdpclExt . h,
void MyCounterProbe(AisPointer ais-send-handle) ;

The first form is used when the function doesn’t need to send any
data back. This might be appropriate when the tool is
initializing a measurement or shutting down the instrumentation.
In the second form, the probe function can send data to the
Collector. The ais-send-handle is an opaque object that DPCL
passes to the function.
data back to the DPCL Collector as follows:

The function uses this handle to send

#include <dpclExt. h>
void MyCounterProbe(AisPointer ais-send-handle)
{

static int counter;

counter++ ;

Ais-send(ais-send-handle, &counter, sizeof(counter)) ;

This example implements a simple counter and reports how many
times it has been called. Calling Ais-send sends the data to the
Collector, which invokes a user-defined callback to handle the
data, as described in Part 11. Although this probe function is
sending back only a single integer, it could also send a larger
structure containing more data.

Once the instrumentation has been written, it is compiled and
converted to a probe module. This process-requires two
additional files: an export file and an import file. (This
information applies to IBM platforms; other systems may have
different requirements.) The export file lists the names of the
probe functions. It is a plain-text file, and for the two
functions listed above, it would look like this:

* Asterisks at the beginning of a line indicate comments.
MyProbe
MyCounterProbe

The import file is also plain-text file. It lists functions
whose names are resolved at run time. In particular, this
includes Ais-send. So a simple import file would consist of
these two lines (the # ! is required for the linker to generate
a file in the format that DPCL needs):

!
Ai s-s end

The import and export files are often named with .imp and .exp
suffixes, respectively. Once they have been created, you can
compile the probe module as follows (assuming your probe module
source code is in mycountermodule.c, and the import and export
files are named accordingly):

cc -g -0 mycountennodule mycountermodu1e.c -I/usr/lpp/ppe.dpcl/include \
-bE:mycountermodule.exp -bI:mycountermodule.imp -bnoentry

The -g flag is needed (in our experience) for DPCL to pass the
ais-send-handle correctly. The -bnoentry flag prevents the
linker from looking for a main function and trying to create an
executable program. The -I flag points to the location of
dpc1Ext.h. You can also link additional libraries into the probe
module using the standard -L and -1 flags.

11. Customizing the DPCL Collector

The DPCL Collector runs on the same computer as the target
application, and it serves as a bridge between the target and the
Client, which stores and displays data, and may run on a
different computer. The Collector, at the request of the Client,
controls the target application, inserts instrumentation, and
receives and forwards data. As provided, the Collector knows how
to execute a target application, start, stop, and terminate it,
change directories, find the source code, and determine the
points where it can be instrumented. The Collector also knows
how to communicate with the Client, and it includes a set of
functions for creating columns in the Client's source code
display and placing data there.

The tool developer is responsible for writing the customization
code that tells the Collector where to find the probe module,
what functions it contains, and what requests from the Client
should trigger various actions. The tool developer is also
responsible for the callback functions that receive data from the
target application and forward it to the Client. The Collector
partly automates many of these steps, so they require a
relatively small amount of code. The Collector is written in
C++, and it's easiest to write the customization code in C++ as
well -

The DPCL Collector offers several classes that the customization
code will likely use. Full descriptions of these classes'
members appear later in this section.

A DPCLActionType represents a probe function in the Collector.
It does not represent a particular instantiation of the function;
only the ability to instantiate that function.

A DPCLPointAction is a DPCLActionType that has been instantiated
as point probe. In other words, the specified probe function
will be called whenever the target program reaches a particular
location. Since the tool user specifies the location through
the Client's GUI, and this location is transmitted from the
Client to the Collector, the developer of customization code
normally doesn't have to deal with the objects that represent
instrumentation points, which are encapsulated in a class called
DPCLActionPoint (not DPCLPointAction) .
A DPCLOneShotAction is a DPCLActionType that has been
instantiated as a one shot probe. The Collector currently has
only limited abilities to instantiate this type of probe
automatically.

A DPCLPhaseAction is a DPCLActionType that has been instantiated
as a phase probe. THIS CLASS HAS NOT YET BEEN IMPLEMENTED.

The first step for the tool builder writing customization code is
to provide the Collector with a list of DPCLActionTypes. This is
done through an initialization function. The tool builder writes
this function, which typically has a prototype like this:

#include "dpcl-action-type-h"
(other include files will also-be needed)
int InitializeMyActions(int socket, int& actioncount,

DPCLActionType **& actionList) ;

The socket is used for communicating with the Client, and the
actionList and actioncount contain the array of (pointers to)

, ' . ." ,

DPCLActionTypes that the Collector knows about already, and the
length of that list. This function will extend the array, add
pointers to new DPCLActionTypes, and update the actionCount.

The basic steps are: Find the probe module, extend the
actionList to hold the new DPCLActionTypes, create the new
DPCLActionTypes, and tell the Client about the DPCLActionTypes
and the data they will be sending.

Here is a sample initialization function that carries out these
steps. It creates just one action, representing the counter
probe defined in Section I. See the comments for details.

#define COUNTER-ENV-VAR "COUNTER-PROBE-M0DULEn
#define COUNTER-MODULE "mycountermodule"
#define COUNTER-ACTIONS 1
#define COUNTER-TAG "startCounters"
#define COUNTER-COLUMN "count I'

#include <dpcl. h>
#include <errno. h>
#include <stdlib.h>
#include <unistd.h>
#include "counter-actions .h"
#include "dpcl-action-type. h"
#include "dpcl-action-instance-h"
#include "dpcl_pack. h"
#include "md-h" / / defines datatypes for Client display
#include "tg-socket .h"

/ / Declaration of the callback function
void CounterProbe-cb(GCBSysType sys, GCBTagType tag,

GCBObjType obj, GCBMsgType msg 1 ;

/ / Initialize the counter probe and tell the client about it.
/ / Returns 0 on success, nonzero otherwise. actioncount
/ / and actionList are in/out parameters.
int InitializeCounterAction(int sock, int& actioncount,

{
DPCLActionType **& actionList)

/ / Find the probe module; look first in an environment
/ / variable, then try a hard-coded location.
char * modulegame = getenv(COUNTER-ENV-VAR) ; '
if(module-name == NULL)

module-name = COUNTER-MODULE;

/ / Check that the file exists and is readable.
if(access(module-name, R-OR I X-OK) != 0) {

fprintf(stderr,
"Error accessing probe module & s : %d\n",
module-name, errno) ;

return -1;
1

/ / See if another set of actions is already in
/ / the list; if,not, create the list from scratch;
/ / otherwise, add to the end of the list.
if(actionCount == 0) {

actionList = new

if(actionList == NULL) return -1;

/ / Make a new, longer list; copy the old list to
/ / the beginning, then we'll add the new actions
/ / to the end.
DPCLActionType * * oldList = actionlist;

D P C L A c t i o n T y p e * [C O U E R _ A C T I O N S] ;

1 else {

1

/ /
/ /
/ /
/ /
/ /

DPCLActionType * * newList
= new DPCLActionType*[actionCount +

COUNTER-ACTIONS];
if(newList == NULL) return -1;

for(int i = 0; i < actioncount; i++) {
newList [i] = oldList [i] ;

1
actionList = newlist;
delete [I oldlist;

Define the action type and tell the Client about it
The parameter are: the text tag that identifies the
action to the Client, the name of the probe module,
the name of the probe function, the socket identifier,
and an optional callback function.

actionList [actionCount++] = new DPCLActionType (
COUNTER-TAG,
modulegame, "MyCounterProbe",
sock, Counterprobe-cb) ;

/ / Tell the client about this action type. Parameters
/ / are: tag, short name, description (used for help
/ / text), and socket name.
pack-and-send-action-attr (COUNTER-TAG, "Get count",

"Cumulative counter", sock) ;

/ / Declare columns in the client's display where data
/ / will be shown. Parameters are: tag €or the column,
/ / column label, description of data, data type, and
/ / socket.
pack-and-send-data-at tr (COUNTER-COLUMN, "Count " ,

"Number of time point has been reached",
MD-IN", sock) ;

/ / Data isn't sent to the Client until this function
/ / is called.
TG-flush(sock) ;

return 0;
1

The next step is to define the callback function that will be
invoked each time the corresponding probe function executes. As
shown in the code above, this function is specified when the
DPCLActionType object is created. If a callback is given, the
probe function will be called with a Ais-handle parameter. If a
null pointer is given for the callback (or the last parameter of
the constructor is omitted), then the probe function will be
called with no arguments. Failing to specify a callback when a
probe function expects one or supplying one when it isn't needed
is likely to cause a crash when the probe function is called.

The callback function's prototype is the standard form for DPCL.
The four parameters are:

GCBSysType is a DPCL data structure that describes how the
message was sent from the target. See the DPCL documentation for
details.

GCBTagType is a pointer-size value. In the DPCL Collector, the
tag is set to point to the DPCLPointAction that caused the
instrumentation to execute.

GCBObjType is a pointer to the DPCL Process object that
represents the process in the target program that sent the data.
In a parallel program, several different processes could execute
the probe function for the same DPCLPointAction.

GCBMsgType is a pointer to the message that the probe function
passed to Ais-send. The size of the message is given in the
GCBSysType structure as sys-msg-size.

Here is an example of a callback that receives the count data
from the probe function and forwards it to the client:

void CounterProbe-cb(GCBSysType sys, GCBTagType tag,

E
GCBObjType obj , GCBMsgWe msg)

int * count = (int *)msg; / / rnsg contains the count
Process * p = (Process *) obj; / / DPCL Process
int task = p->get-task(); / / parallel process id
DPCLPointAction * action =

(DPCLPointAction *) tag;

/ / Retrieve the location in the program of this
/ / point probe
DPCLActionPoint * location = action->get-ownerO;

/ / Where to send the data
int sock = action->get-type()->get-socket();

/ / Send the count data to the Client. Parameters are:
/ / target program function name, identifier for the
/ / instrumentation point (so the Client k n o w s where in
/ / the source code to display the data), name of the
/ / column where data will appear, task id, thread id
/ / (unused here), data value, and socket.
pack-and-send-int(location->get-function-name(),

location->get-tagO, COUNTER-COLUMN, task, 0 ,
*count, sock) ;

TG-f lush (sock) ;

If your instrumentation needs some type of cleanup before the
program exits, you can create a special probe function and
identify it with the tag "finalize" (when you call the
DPCLActionType constructor). An action type with this tag will
be called automatically as a one-shot probe just before the
program exits.

Once you have defined the callbacks and the initialization code
for the actions, you can compile it in with the rest of the
Collector code. (Dynamic loading isn't offered yet.) To do
this, first insert a call to your initialization code in the file
dpcl-collector.cpp, as shown here:

. . .
/ / Set up handler to receive messages from GUI
Ais-add-fd(sock, dpcl-socket-handler) ;

/ / Set up the tool-specific actions that the collector
/ / will use
if(InitializeCounterAction(sock, actioncount,

actioaist) != 0) {
/ / Initialization failed; tell Client to quit
TG-send(sock, DPCL-SAYS-QUIT, 0, 0, NULL) ;
TG-flush(sock) ;

You can call several initialization functions in succession, if
necessary. You will also need to declare these functions at the
beginning of the file. To compile everything, simply add the
name of the .o file for your initialization code and callbacks to
the TG-DPCL-OBJECTS line in the Makefile. When you run the
program, you will need to set an appropriate environment variable
to point to the absolute path of the probe module. Remember that
the Client will launch a new shell to run the Collector, so the
environment variable must be set in a .login file. You can also
hard-code the file name into the initialization code, as shown
above, but this may not work as well as an environment variable,
because the Client may change to any working directory that the
user requests before starting the Collector. For that reason,
the Collector's executable code must be in the search path for
the shell the that Client starts.

The simple example of Collector code shown in this section
illustrates the basic steps, but the tool it defines isn't very
useful. For a real-world example of a tool built using Tool
Gear, see mpx-counters.cpp and the MPX probe module software in
cacheperf-c.

111. Extending the Client to display data

Tool Gear currently allows the tool writer to customize the
icons, menu text, and tool tips the user encounters when using
the generic tool gear GUIs. A s the infrastructure evolves, it is
envisioned that customization can occur both on client and server
side and significant changes are planned to support these and
other customizations. Currently, most customizations are placed
in the client side in gui-socket-reader-cpp in the void
GUISocketReader::unpack_and_declare_action-attr (char *buf)
method.

Every action that is declared by the server passes thru this
routine. Customizations are added by testing the action-name and
adding the desired customizations using UIManager calls.

Pixmaps are expected in the XPM 3 format. This text-based format
is the de facto standard and can be easily embedded in C/C++.
Please see http://koala.ilog.fr/lehors/xpm.html for the format
details, tools for converting from earlier versions, etc.

For example, the startcounters pixmap is declared as follows in
gui-socket-reader-cpp:

static const char * startCounters-xpmt] = {
"15 15 6 l",

n c #000000000000",
11 c None" ,

"G c #0000FFFF0000",
"R c #FFFF00000000",
II . c #E500E500E500",
"W c #FFFFFFFFFFFF" ,
"-" I

"W:::GGGGGGG:::.",
"W: :GG.G.G.GG: : . ",
"W:GGG.G.G.GGG: . " ,
"WGGG.. - . - . .GGG. ' I ,

"WG. G. ' I ,
"WGGG GGG . " ,
"WG..G. " ,
"WGGG GGG.",

http://koala.ilog.fr/lehors/xpm.html

"WG. - . . . - . . . ~ . G. " ,
"WGGG. - . - - - . GGG. " ,
"W:GGG.G.G.GGG: . ' I ,
"W: :GG.G.G.GG: : . ' I ,

"W: : : GGGGGGG : : : - " ,
"W. * . . _ . - * - - - . - . " I ;

Using as small set of UIManager calls (uimanager-h), the pixmaps
used by an action can be declared as well as the states the
action can be in. Currently the DPCL server only expects two
states, instrumented and uninstrumented and in the following
example we name these states 'In' and 'Out'-

Example for handling 'startcounters' in
unpack-and_declare-action-attr():

. - .
/ / Set up GUI for MPX action 'startcounters'
if (strcmp (actiomame, "startcounters") == 0)
{

/ / Declare start counter pixmap
urn->declarepixmap ("startCountersPixmap", startcounters-xpm);

/ / Declare pimaps, menu text, and tool tip f o r the
/ / uninstrumented state 'Out'
um->declareActionState ("startCounters",

" O u t 'I ,
/ / Pixmap for removing
llstartCountersPixmap",
"Remove Start Counters",
"Remove mpx probe to start cache and FLOP measurements from here",
I, #I , / / No pixmap if removed
"Uninstrumented potential start counters location",
TRUE) ;

/ / Declare pixmaps, menu text, and tool tip for the
/ / instrumented state 'In'
um->declareActionState ("startCounters",

'I In 'I ,
I' star tCoun t ers Pixmap 'I ,
"Start Counters",
"Insert mpx probe to start cache and FLOP measurements here",
"startCountersPixmap",
"Starts cache and FLOP measurements here (starts new mpx region)",
TRUE) ;

I T
else if (<test for other actions>)

As the user changes states from 'Out' to 'In' and back in the
GUI, the UIManager state gets changed. This causes UIManager
throw a signal that the action state has changed. The
GUIActionSender (gui-action-sender-cpp) listens for these state
changes and relays each state change to DPCL server.

